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Intro: Motivations

Physical processes are mostly nonstationary

Physical processes are mostly nonlinear

Data from observations are invariably too short

Physical processes are mostly nonrepeatable

∪ Ensemble mean impossible, and temporal mean       
might not be meaningful for lack of ergodicity. 
Traditional methods are inadequate.
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Intro: Available Data Analysis Methods
for Nonstationary (but Linear) Time Series

Various probability distributions
Spectral analysis and spectrogram
Wavelet analysis
Wigner-Ville distributions
Empirical orthogonal functions (aka singular spectral 
analysis)
Moving means
Successive differentiations
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Intro: Available Data Analysis Methods for
Nonlinear (but Stationary and Deterministic)

Time Series

Phase space method
• Delay reconstruction and embedding
• Poincaré surface of section
• Self-similarity, attractor geometry & fractals

Nonlinear prediction
Lyapunov exponents for stability
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Intro: Consequences of these Methods

With the explosion of data and computer, 
the field is ready for a data analysis 
methodology revolution.

We not only need new methods but also a 
new paradigm for analyzing data from 
nonlinear and nonstationary processes.
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Intro: History of EMD
1998: The Empirical Mode Decomposition Method and the Hilbert Spectrum for 

Non-stationary Time Series Analysis,  Proc. Roy. Soc. London, A454, 903-995.
The introduction of the basic method of EMD and Hilbert transform for 
determining the instantaneous frequency and energy.

1999: A New View of Nonlinear Water Waves – The Hilbert Spectrum, Ann. Rev. 
Fluid Mech. 31, 417-457.
Introduction of the intermittence in EMD decomposition. 

2003:  A confidence Limit for the Empirical mode decomposition and the Hilbert 
spectral analysis, Proc. of Roy. Soc. London, A459, 2317-2345.
Establishment of a confidence limit without the ergodic assumption.  

2004: A Study of the Characteristics of White Noise Using the Empirical Mode 
Decomposition Method, Proc. Roy. Soc. London, (in press)
Defined statistical significance and predictability for IMF from EMD. 

2004: On the Instantaneous Frequency, Proc. Roy. Soc. London, (Under review)
Removal of the limitations posted by Bedrosian and Nuttall theorems for 
Instantaneous Frequency computations.
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Intro: Characteristics of Data from 
Nonlinear Processes
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Intro: Duffing Pendulum
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Intro: Definition of Hilbert Transform
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Intro: Hilbert Transform Fit
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Intro: Traditional View a la Hahn (Length of Day 
Data, 1995)
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Intro: Traditional View a la Hahn (Hilbert, 1995)
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Intro: Traditional View a la Hahn (Phase Angle, 
1995)



Nonstationary and Nonlinear Time  Analysis 8

7/21/2004 15

Intro: Traditional View a la Hahn (Phase Angle, 
1995)
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Intro: Traditional View a la Hahn (Frequency, 
1995)
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Why doesn’t the traditional 
approach work?
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Intro: Why the traditional view doesn’t 
work… Hilbert Transform a cos θ + b (Data)
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Intro: Why the traditional view doesn’t work… 
Hilbert Transform a cos θ + b (Phase Diagram)
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Intro: Why the traditional view doesn’t work…
Hilbert Transform a cos θ + b (Phase Angle Details)
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Intro: Why the traditional view doesn’t work…
Hilbert Transform a cos θ + b (Frequency)
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EMD & Sifting: Test Data
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EMD & Sifting: Test Data and Mean M1
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EMD & Sifting: Test Data and H1
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EMD & Sifting: Test Data, H1, Mean M2
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EMD & Sifting: Test Data, H2, Mean M3
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EMD & Sifting: Test Data, H4, Mean M5
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EMD & Sifting: Getting one IMF 
Component
Sifting : to get one IMF component
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EMD & Sifting: Two Stoppage 
Criteria (S and SD)

A. The S number :  S is defined as the 
consecutive number of siftings in which the 
number of zero-crossing and extrema are the 
same for these S siftings.

B.   SD is small than a pre-set value, where
2T
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EMD & Sifting: IMF C1

7/21/2004 32

EMD & Sifting: Definition of the Intrinsic 
Mode Function

Any function having the same numbers of
zero cros sin gs and extrema ,and also having
symmetric envelopes defined by local max ima
and min ima respectively is defined as an
Intrinsic Mode Function ( IMF ).

All IMF enjoys good Hilbert Transfo

−

i ( t )

rm :

c( t ) a( t )e θ⇒⇒ =
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EMD & Sifting: Getting all IMF 
Components
Sifting : to get all the IMF components
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EMD & Sifting: Test Data and Residue R1
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EMD & Sifting: Definition of Instantaneous 
Frequency
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EMD & Sifting: Comparison between 
FFT and HHT
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EMD & Sifting: Comparisons Between 
Fourier, Hilbert, and Wavelet
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IMF Components: Adaptive Basis 
Generated by EMD

* Orthogonality †
* Completeness
* Uniqueness
* Convergence

These comprise the traditional check list.
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IMF Components: Length Of Day Data
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IMF Components: LOD IMFs
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IMF Components: Orthogonality Check

Pair-wise % 

0.0003
0.0001
0.0215
0.0117
0.0022
0.0031
0.0026
0.0083
0.0042
0.0369
0.0400

Overall % 

0.0452
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IMF Components: Data & Various Partial Sums
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IMF Components: Detailed Length of Day Data and 
Sum c8-c12
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IMF Components: Detail LOD Data and Sum IMF 
c7-c12
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IMF Components: Difference Between LOD 
Data and Sum of All IMFs
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IMF Components: EMD Generated 
Adaptive Basis

Completeness
Given by definition

Convergence
Simple reduced cases can be proven

Orthogonality
Reynolds type decomposition: mean ⊥ fluctuation; 
not necessary for nonlinear cases 

Uniqueness
With respect to adjustable parameters
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Confidence Limit: Confidence Limit for 
Fourier Spectrum

The confidence limit for Fourier spectral analysis is 
based on ergodic assumption.
It is derived by dividing the data into M sections and 
substituting the temporal (or spatial) average as the 
ensemble average.
This approach is valid for linear and stationary 
processes, and the sub-sections have to be 
statistically independent.
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Confidence Limit: Confidence Limit for 
Fourier Spectrum

Confidence Limit from 7 sections, each 2048 points.
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Confidence Limit: Confidence Limit for 
Hilbert Spectrum

Any data can be decomposed into infinitely 
many different component sets.
EMD is a method to generate infinitely many 
different IMF representations based on different 
sifting parameters.
Some of the IMFs are better than others based 
on various properties (e.g., Orthogonal Index).
A confidence limit for Hilbert spectral analysis 
can be based on an ensemble of “valid” IMFs
resulting from different sifting parameters S 
covering the parameter space fairly.  
It is valid for nonlinear and nonstationary 
processes.
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Confidence Limit: Critical Parameters for 
EMD

N: the maximum number of siftings allowed to 
extract an IMF.

S: the stoppage criterion, or criterion for 
accepting a sifting component as an IMF.

Therefore, the nomenclature for the IMFs is as 
follows:

CE(N, S) : for extrema sifting
CC(N, S) : for curvature sifting
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Confidence Limit: Effects of EMD (Sifting)
To separate data into components of 
similar scale
To eliminate ridding waves
To make the results symmetric with 
respect to the x-axis and to make the 
amplitude more even

Note: The first two are necessary for a valid 
IMF, the last effect actually caused the IMF 
to lose its intrinsic properties.
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Confidence Limit: Orthogonal Index as 
Function of  N and S Contour
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Confidence Limit: Orthogonality Index as 
Function of N and S
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Confidence Limit: IMF  CE(100, 2)
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Confidence Limit: IMF CE(100, 10)
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Confidence Limit: Mean Hilbert Spectrum 
with All CEs
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Confidence Limit: Mean and STD of 
Marginal Hilbert Spectra
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Confidence Limit: Mean Envelope from 11 
Different Siftings for LOD Data
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Confidence Limit: Mean Envelopes for 
Annual Cycle IMFs
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Degree of Staionarity: Defining the 
Degree of Stationarity

Traditionally, stationarity is taken for granted; 
it is given; it is an article of faith.
All the definitions of stationarity are too 
restrictive.
All definitions of stationarity are qualitative.
A good definition must be quantitative to give 
a Degree of Stationarity.



Nonstationary and Nonlinear Time  Analysis 32

7/21/2004 63

Degree of Stationarity: Definition of 
Strict Stationarity
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Degree of Stationarity: Definition of 
Wide Sense Stationarity
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Degree of Stationarity: Definition of 
Statistical Stationarity
Applies if the stationarity definitions are satisfied with 
certain degree of averaging.

All averaging involves a time scale.  The definition of 
this time scale is problematic.
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Degree of Stationarity: For a Time-
Frequency Distribution
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Degree of Stationarity: Degree of 
Statistical Stationarity for a Time-
Frequency Distribution
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Statistical Significance: Methodology

Method is based on observations from Monte 
Carlo numerical experiments on 1 million 
white noise data points.
All IMFs are generated by 10 siftings.
Fourier spectra are based on 200 realizations 
of 4,000 data point sections.
Probability densities are based on 50,000 
data point data sections.
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Statistical Significance: IMF Period 
Statistics

IMF
1 2 3 4 5 6 7 8 9

Number 
of peaks

347042 168176 83456 41632 20877 10471 5290 2658 1348

Mean 
period

2.881 5.946 11.98 24.02 47.90 95.50 189.0 376.2 741.8

Periods in 
a year

0.240 0.496 0.998 2.000 3.992 7.958 15.75 31.35 61.75
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Statistical Significance: Empirical 
Observations I
Normalized spectral area is constant

constTdS nT =∫ ln,ln
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Statistical Significance: Empirical 
Observations II
Computation of mean period
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Statistical Significance: Empirical 
Observations III
The product of the mean energy and period is 
constant

constTE nn =

constTE nn =+ lnln
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Statistical Significance: Monte Carlo 
Result (IMF Energy vs. Period)
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Statistical Significance: Empirical Observation, 
IMF Histograms 
By Central Limit theory IMF should be normally distributed.
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Statistical Significance: IMF Energy 
Density Histograms

By Central Limit Theory, the IMFs should be normally distributed; 
therefore, the energy density should be Chi-squared distributed.
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Statistical Significance: Chi-Squared 
Energy Density Distributions

( ) 212)( nn NEEN
nn eNENE −−⋅=ρ

By Central Limit Theory, the IMFs should be normally 
distributed; therefore, the energy density should be 
Chi-squared distributed.
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Statistical Significance: Formula for Confidence 
Limit for IMF Distributions
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Statistical Significance: Confidence Limit 
for IMF Distributions
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Statistical Significance: Data and IMFs SOI
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Statistical Signifiance: Statistical 
Significance for SOI IMFs

1 mon 1 yr 10 yr 100 yr

IMFs 4, 5, 6 and 7 are 99% statistical significance signals.
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Statistical Significance: Summary
Not all IMFs have the same statistical significance.
Based on the white noise study, we have established 
a method to determine the statistical significant 
components.
References:

Wu, Zhaohua and N. E. Huang, 2003: A Study of the 
Characteristics of White Noise Using the Empirical Mode 
Decomposition Method, Proceedings of the Royal Society of 
London (in press).
Flandrin, P., G. Rilling, and P. Gonçalvès, 2003:  Empirical 
Mode Decomposition as a Filterbank, IEEE Signal 
Processing, (in press).
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Nonlinearity: Duffing Type Wave (Data: x = 
cos(wt+0.3 sin2wt))
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Nonlinearity: Duffing Type Wave 
(Perturbation Expansion)

( )
( ) ( )

For 1 , we can have

x( t ) cos t sin2 t

cos t cos sin2 t sin t sin sin2 t
cos t sin t sin2 t ....

1 cos t cos 3 t ....
2 2

This is very similar to the solutionof Duffingequation .

ε

ω ε ω

ω ε ω ω ε ω

ω ε ω ω
ε εω ω
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= −

= − +

 = − + + 
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Nonlinearity: Duffing Type Wave (Wavelet 
Spectrum)
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Nonlinearity: Duffing Type Wave (Hilbert 
Spectrum)
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Nonlinearity: Duffing Type Wave 
(Marginal Spectra)
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Nonlinearity: Duffing Equation
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Nonlinearity: Duffing Equation (Data)
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Nonlinearity: Duffing Equation (IMFs)
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Nonlinearity: Duffing Equation (IMFs)
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Nonlinearity: Duffing Equation (Hilbert 
Spectrum)
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Nonlinearity: Duffing Equation (Detailed 
Hilbert Spectrum)
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Nonlinearity: Duffing Equation 
(Wavelet Spectrum)
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Nonlinearity: Duffing Equation (Hilbert & 
Wavelet Spectra)
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Nonlinearity: Duffing Equation (Marginal 
Hilbert Spectrum)
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Nonlinearity: Rössler Equation
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Nonlinearity: Rössler Equation (Data)
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Nonlinearity: Rössler Equation (3D 
Phase)
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Nonlinearity: Rössler Equation (2D Phase)
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Nonlinearity: Rössler Equation (IMF Strips)
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Nonlinearity: Rössler Equation (IMFs)
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Nonlinearity: Rössler Equation (Hilbert Spectrum)



Nonstationary and Nonlinear Time  Analysis 53

7/21/2004 105

Nonlinearity: Rössler Equation (Hilbert 
Spectrum & Data Details)

7/21/2004 106

Nonlinearity: Rössler Equation (Wavelet 
Spectrum)
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Nonlinearity: Rössler Equation (Hilbert & 
Wavelet Spectra)
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Nonlinearity: Rössler Equation (Marginal 
Spectra)
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Nonlinearity: Rössler Equation (Marginal 
Spectra)
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Nonlinearity:
What does this mean?

Instantaneous Frequency offers a total different view 
for nonlinear data.

An adaptive basis is indispensable for nonstationary 
and nonlinear data analysis.

HHT establishes a new paradigm for data analysis.
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Nonlinearity: Comparisons

YesDiscrete : no
Continuous: yes

NoFeature 
extraction

YesYesNoNon-stationary

YesNoNoNonlinear 

Energy-time-
frequency

Energy-time-
frequency

Energy-
frequency

Presentation

Differentiation:
Local

Convolution: 
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Convolution: 
Global

Frequency

AdaptiveA prioriA prioriBasis

HilbertWaveletFourier
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Nonlinearity: Different Paradigms
Mathematics vs. Science/Engineering

Mathematicians

Absolute proof

Logic consistency

Mathematical rigor

Scientists/Engineers

Agreement with observations

Physical meaning

Working approximations



Nonstationary and Nonlinear Time  Analysis 57

7/21/2004 113

Outline
Introduction

The Empirical Mode Decomposition (EMD) method, sifting

Intrinsic Mode Function (IMF) components, the adaptive basis through EMD

Confidence limit, degree of stationarity, and statistical significance of IMF

A different view on nonlinearity  

Applications and examples

Limitations of HHT and unfinished work

Contact information

7/21/2004 114

Applications: Current Applications

Non-destructive evaluation for health monitoring 
(DOT, NSWC, and DRC/NASA, KSC Shuttle)

Vibration, speech, and acoustic signal analyses
(FBI, MIT, and DARPA)

Earthquake engineering
(DOT)

Biomedical applications
(Harvard, UCSD, Johns Hopkins, and 
Southampton, UK)
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Applications: Current Applications

Global primary productivity evolution time 
series from LandSat data 

(NASA Goddard)
Planet hunting

(NASA Goddard and Nicholas Copernicus 
University, Poland)

Financial market data analysis
(NASA and HKUST)
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Examples: Airfoil Flutter Study
The new NASA aeroelastic flight program is pushing 
the airfoil to a new frontier.  HHT clearly identified 
the yield of the airfoil just before the final 
disintegration of the airfoil. 

Fourier totally missed the critical change.
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Examples: Location of the Test Wing
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Examples: Details of the Test Wing
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Examples: Airfoil Flutter
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Examples: Full Data
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Examples: Mean Hilbert Spectrum y(i)
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Examples: Mean Hilbert and Spectrogram 
y83
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Examples: Instantaneous Frequency and 
Data Envelope
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Limitations: Limitations of Hilbert 
Transform
• Data need to be mono-component. Traditional 

applications using band-pass filter, which distorts the 
wave form. (EMD Resolves this problem)

• Bedrosian Theorem:  Hilbert transform of [a(t) 
cosω(t)] might not be exactly [a(t) sinω(t)] for 
arbitrary a and ω . (Normalized HHT resolves this)

• Nuttall Theorem: Hilbert transform of cosω(t)  might 
not be exactly sinω(t) for arbitrary ω(t). (Normalized 
HHT improves on the error bound).
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Unfinished Work: Outstanding 
Mathematical Problems

1.Adaptive data analysis methodology in general
2.Nonlinear system identification methods
3.Prediction problem for nonstationary processes 

(end effects)
4.Optimization problem (the best IMF selection 

and the issue of uniqueness, i.e. “Is there a unique 
solution?”)

5.Spline problem (best spline implementation of HHT, 
convergence, and 2-D)
6.Approximation problem (Hilbert transform 

and quadrature)
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Contact Information

If you are interested in learning more about NASA 
Goddard’s HHT technology, please visit our 
Website:

http://techtransfer.gsfc.nasa.gov/HHT/HHT.htm


